SQL Server 2012 : SQL Server Architecture – THE LIFE CYCLE OF A QUERY (part 1)



It looks at a basic SELECT query first in order to reduce the scope to that of a READ operation, and then introduces the additional processes involved for a query that performs an UPDATE operation. Finally, you’ll read about the terminology and processes that SQL Server uses to implement recovery while optimizing performance.

FIGURE 1

THE LIFE CYCLE OF A QUERY_1

The Relational and Storage Engines

As shown in Figure 1, SQL Server is divided into two main engines: the Relational Engine and the Storage Engine. The Relational Engine is also sometimes called the query processor because its primary function is query optimization and execution. It contains a Command Parser to check query syntax and prepare query trees; a Query Optimizer that is arguably the crown jewel of any database system; and a Query Executor responsible for execution.

The Storage Engine is responsible for managing all I/O to the data, and it contains the Access Methods code, which handles I/O requests for rows, indexes, pages, allocations and row versions; and a Buffer Manager, which deals with SQL Server’s main memory consumer, the buffer pool. It also contains a Transaction Manager, which handles the locking of data to maintain isolation (ACID properties) and manages the transaction log.

The Buffer Pool

The other major component you need to know about before getting into the query life cycle is the buffer pool, which is the largest consumer of memory in SQL Server. The buffer pool contains all the different caches in SQL Server, including the plan cache and the data cache, which is covered as the sections follow the query through its life cycle.

A Basic SELECT Query

The details of the query used in this example aren’t important — it’s a simple SELECT statement with no joins, so you’re just issuing a basic read request. It begins at the client, where the first component you touch is the SQL Server Network Interface (SNI).

SQL Server Network Interface

The SQL Server Network Interface (SNI) is a protocol layer that establishes the network connection between the client and the server. It consists of a set of APIs that are used by both the database engine and the SQL Server Native Client (SNAC). SNI replaces the net-libraries found in SQL Server 2000 and the Microsoft Data Access Components (MDAC), which are included with Windows.

SNI isn’t configurable directly; you just need to configure a network protocol on the client and the server. SQL Server has support for the following protocols:

  • Shared memory — Simple and fast, shared memory is the default protocol used to connect from a client running on the same computer as SQL Server. It can only be used locally, has no configurable properties, and is always tried first when connecting from the local machine.
  • TCP/IP — This is the most commonly used access protocol for SQL Server. It enables you to connect to SQL Server by specifying an IP address and a port number. Typically, this happens automatically when you specify an instance to connect to. Your internal name resolution system resolves the hostname part of the instance name to an IP address, and either you connect to the default TCP port number 1433 for default instances or the SQL Browser service will find the right port for a named instance using UDP port 1434.
  • Named Pipes — TCP/IP and Named Pipes are comparable protocols in the architectures in which they can be used. Named Pipes was developed for local area networks (LANs) but it can be inefficient across slower networks such as wide area networks (WANs).
To use Named Pipes you first need to enable it in SQL Server Configuration Manager (if you’ll be connecting remotely) and then create a SQL Server alias, which connects to the server using Named Pipes as the protocol.
Named Pipes uses TCP port 445, so ensure that the port is open on any firewalls between the two computers, including the Windows Firewall.
  • VIA — Virtual Interface Adapter is a protocol that enables high-performance communications between two systems. It requires specialized hardware at both ends and a dedicated connection.
Like Named Pipes, to use the VIA protocol you first need to enable it in SQL Server Configuration Manager and then create a SQL Server alias that connects to the server using VIA as the protocol. While SQL Server 2012 still supports the VIA protocol, it will be removed from a future version so new installations using this protocol should be avoided.

Regardless of the network protocol used, once the connection is established, SNI creates a secure connection to a TDS endpoint (described next) on the server, which is then used to send requests and receive data. For the purpose here of following a query through its life cycle, you’re sending the SELECT statement and waiting to receive the result set.

Tabular Data Stream (TDS) Endpoints

TDS is a Microsoft-proprietary protocol originally designed by Sybase that is used to interact with a database server. Once a connection has been made using a network protocol such as TCP/IP, a link is established to the relevant TDS endpoint that then acts as the communication point between the client and the server.

There is one TDS endpoint for each network protocol and an additional one reserved for use by the dedicated administrator connection (DAC). Once connectivity is established, TDS messages are used to communicate between the client and the server.

The SELECT statement is sent to the SQL Server as a TDS message across a TCP/IP connection (TCP/IP is the default protocol).

Protocol Layer

When the protocol layer in SQL Server receives your TDS packet, it has to reverse the work of the SNI at the client and unwrap the packet to find out what request it contains. The protocol layer is also responsible for packaging results and status messages to send back to the client as TDS messages.

Our SELECT statement is marked in the TDS packet as a message of type “SQL Command,” so it’s passed on to the next component, the Query Parser, to begin the path toward execution.

Figure 2 shows where our query has gone so far. At the client, the statement was wrapped in a TDS packet by the SQL Server Network Interface and sent to the protocol layer on the SQL Server where it was unwrapped, identified as a SQL Command, and the code sent to the Command Parser by the SNI.

FIGURE 2

THE LIFE CYCLE OF A QUERY_2

Command Parser

The Command Parser’s role is to handle T-SQL language events. It first checks the syntax and returns any errors back to the protocol layer to send to the client. If the syntax is valid, then the next step is to generate a query plan or find an existing plan. A query plan contains the details about how SQL Server is going to execute a piece of code. It is commonly referred to as an execution plan.

To check for a query plan, the Command Parser generates a hash of the T-SQL and checks it against the plan cache to determine whether a suitable plan already exists. The plan cache is an area in the buffer pool used to cache query plans. If it finds a match, then the plan is read from cache and passed on to the Query Executor for execution. (The following section explains what happens if it doesn’t find a match.)